

New approaches for the valorisation of URBAN bulky waste into high added value RECycled products

URBANREC FINAL Meeting

5-7th November, 2019 BRUSSELS (Belgium)

WP 3- Pre-treated waste materials validation in industrial manufacturing: PU foam, mixed textile, hard plastics and wood.

WP Leader: Rampf

WP 3- Pre-treated waste materials validation in industrial manufacturing: PU foam, mixed textile, hard plastics and wood.

WP3 Objective:

- Demonstrators manufacturing and validation of foam core layer, foam top layer, adhesives coming from bulky waste materials
- Industrial manufacturing and validation of needlefelts
- Design and manufacturing of foam mattress with recycled materials coming from bulky waste.
- Industrial manufacturing and validation of composites
- ➤ To manufacture wood plastic composites (WPC) compounds using bulky recycled hard plastics &wood, and validate industrial manufacturing of WPC products

WP 3.1 Industrial production of secondary polyols for PU formulations (adhesives and foams)

Accomplishments and key results:

Acidolysis

800 kg

MANAGEMENT

Secondary polyol production in 160 L scale for...

©Eurospuma.

12 pphp recycled polyol

@Rescoll

50 pphp recycled polyol

©Fraunhofer ICT.

©Rampf Eco Solutions

50 pphp recycled polyol

WP 3.1.1 Industrial manufacturing and validation of recycled foam for mattresses application.

Accomplishments and key results:

Leader: Eurospuma - Production of viscoelastic mattresses top layer

Step1: Formulation development in laboratory scale

Step2: Industrial trial:

Raw Material	Formulation
Visco Polyol	79.0 pph
Standard Polyol	8.0 pph
Secondary polyol	12.0 pph
Visco Additive	1.0 pph
Tin Catalyst	0.047 pph
Blowing Agent	0.105 pph
Curing Agent	0.151 pph
Surfactant	0.80 pph
Water (total)	2.16 pph
MDI	48.65 pph
Index	73.3

Production information

Information	Result
Foam Produced	6293 kg
Volume Produced	111.6 m ³
Production Time	18.75 min

WP 3.1.1 Industr recycled foc

EUROSPUMA - Sociedade Industrial de Espumas Sintéticas, SA Rua dos Lagos, 242 4500-423 Guetim - Espinho Portugal

s top layer

TECHNICAL DATA SHEET (TDS)

Product: Top Layer - UrbanRec Foam

Accomplishments and

Leader: Eurospuma – Pro

Step1: Formulation development in laboratory scale

Raw Material	Formulation
Visco Polyol	79.0 pph
Standard Polyol	8.0 pph
Secondary polyol	12.0 pph
Visco Additive	1.0 pph
Tin Catalyst	0.047 pph
Blowing Agent	0.105 pph
Curing Agent	0.151 pph
Surfactant	0.80 pph
Water (total)	2.16 pph
MDI	48.65 pph
Index	73.3

Characteristics

Polyether / Viscoelastic Polyurethane Type of Foam

100% PU Composition

Color Brownish Cream

Top Layer PUR Foam for Bedding Main Usage

Phy:	sical	Pro	per	ties
STATE OF A			MONOR	

Inf		Limits	Unit	Internal Procedure	Based on Standard
	Density	52.50 ± 5.00	kg/m³	PL018	ISO 845:2006
Fo	Compression Hardness CV 40%	1.60 ± 0.30	kPa	PL056	ISO 3386-1:1986 Amd 1:2010
Vo	ILD 40%	60.00 ± 15.00	N	PL022	ISO 2439:2008
Pro	Resilience	< 9.00	%	PL024	ISO 8307:2007
Pro	Elongation	> 100.00	%	PL035	ISO 1798:2008
	Tensile Strength	> 35.00	kPa	PL035	ISO 1798:2008
	Compression Set at 75%	< 2.00	%	PL021	ISO 1856:2000 Amd 1:2007
	Recovery Time	< 2.00	S	PL064	Internal Reference

Rev. 01

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 6 subcritors - scholar individual fraction in Appendix Series S.A. uniqual - Contributada 900 NO 400 - Not + No 20 FRE 90 NO Nos + REC22 FRE 90 NO + Annal -Sociedade Anorama - Capital Social 14.6000004 - Mariti Jaida na C.R.C. tripinto

WP 3.1.2 Adhesives formulation from recovered polyol by solvolysis. Production and validation of adhesives for mattresses application.

PUR hot-melt adhesive formulation based on secondary polyols

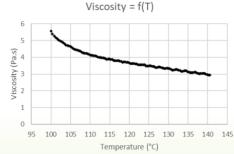
Shelf-life: at least 9 months

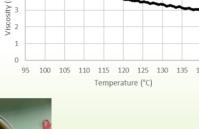
Softening point: 80 °C

Curing time: 7 days

Working T: 120 °C

ightharpoonup T_m: 53 °C / T_g: '-30 °C

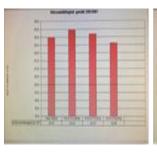

			,
	Hot Melt PSA	Hot-Melt PUR (polyester polyol + recycled polyol)(2)	Hot-Melt PUR (polyester polyol + polyether polyol + recycled polyol) (3)
Peel Strength (on NWT/rigid foam)	<u>CF</u>	<u>SF</u>	<u>SF</u>
	0,8 N/cm	0,7 ± 0,3 N/cm	1,4 ± 0,2 N/cm
Peel Strength (on NWT/viscoelastic foam)	CF	<u>SF</u>	SF
	1,25 N/cm	3 ± 1 N/cm	3,7 ± 0,4 N/cm

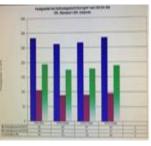


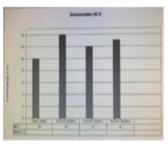
Scale up to 10 kg batch

Selected formulation

Raw Material	Formulation (g)
Polyether + polyester polyol	400
Recycpol	400
MDI	250

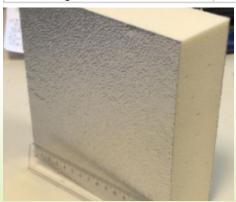



WP 3.1.3 Insulation materials for the construction sector from recovered polyol by solvolysis



Accomplishments and key results:

Insulation panel based on secondary polyol



	Petol 240	Petol 240 / Urb F78 70/30
Heat conductivity mW/(m*K)	22,97	22,6
Strength / kPa	194	189

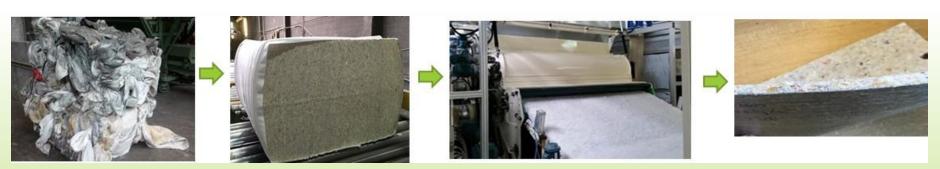
heat conductivity	0,0217 W/mK
compression strength	250 kPa
burning test B2	13,5 cm

© Rampf Eco Solutions

©Rampf Eco Solutions

WP 3.2 Industrial manufacturing and validation of needlefelts

Accomplishments and key results:


Mattress textile waste were directly processed to obtain long fiber suitable for nonwoven applications

2 textile streams were mainly tested:

- Textile waste coming from Delax partner (mattress producer)
- Textile stream coming from sorting center (Vanheede)

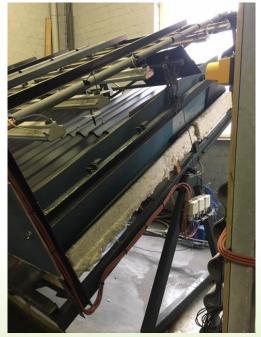
Several nonwoven processes and fiber mixture were evaluated

These nonwovens were subsequently reprocessed to produce the final product: principally insulation panels:

WP 3.2 Industrial manufacturing and validation of needlefelts

Accomplishments and key results:

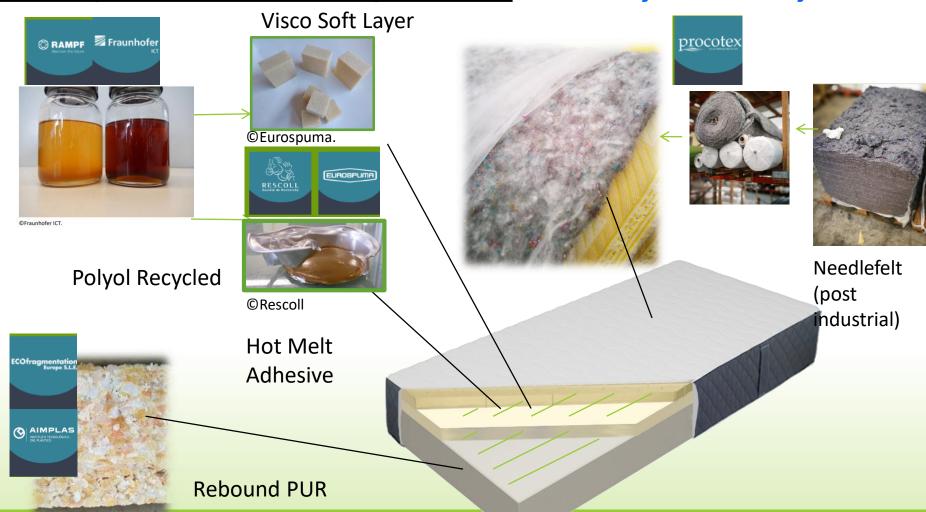
Leader: Procotex


Below some examples of samples prepared to prospect the market

Evaluation of all nonwoven samples were made

- Heat conductivity
- Flammability
- Accoustic absorption

@Procotex, Insulation panel


@Procotex, Insulation panel during heat and humidity test

WP 3.3 Design and manufacturing of foam matresses with recycled materials coming from bulky waste.

Accomplishments and key results: 92% recycled bulky waste

WP 3.3 Design and manufacturing of foam matresses with recycled materials coming from bulky waste.

Achievements checklist

Property	objective	done
Density	25-50	OK 🕢
Resilience	10% less than Virgin	OK 🕢
Fatigue resistance	10% less than Virgin	Better than virgin 🕢 🗸
Biohazards Microbio	Not contaminated	OK 🕢
Biohazards Chemicals	REACH & OEKOTEX compliance	OK, still in progress
Biomechanical Comfort	10% less than Virgin	OK 🕢
Thermal Comfort	10% less than Virgin	OK 🕢
Rolling possibilities	standards	Not achieved yet

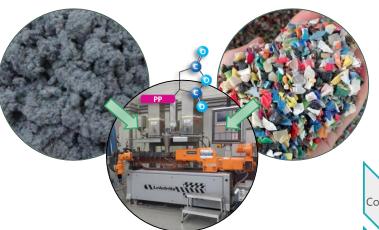
WP 3.4 Industrial manufacturing and validation of short fibre reinforced PP composites

Filler

<u>Bulky textile waste:</u> Carpets, mattress textiles, postproducer textile scraps

Material types

- PI natural and synthetic fibres
- PC mattress PES/cotton blends (fraction of PA, wool and PU foam)


Material requirements

- Large knitted or woven fabrics
- No laminated or glued parts
- No hard pieces (wood, metal, plastic)

Process

- Cutting
- Milling to 1-5 mm

Compounding

Pilot scale fibre feeding
= challenging due to the low bulk
density of textile fibres

Solution 1: specialized feeder with agitator to prevent fibre bridging

Solution 2: compactor to press fibres into better dosable pellets

Solution 3: under water pelletizer allows higher fibre concentrations

Matrix

Bulky plastics waste: Garden furniture, crates, boxes, buckets, toys, etc.

- Mixed rigid plastics
- Contaminants: wood, metals, stones, etc.

Clean-up 1

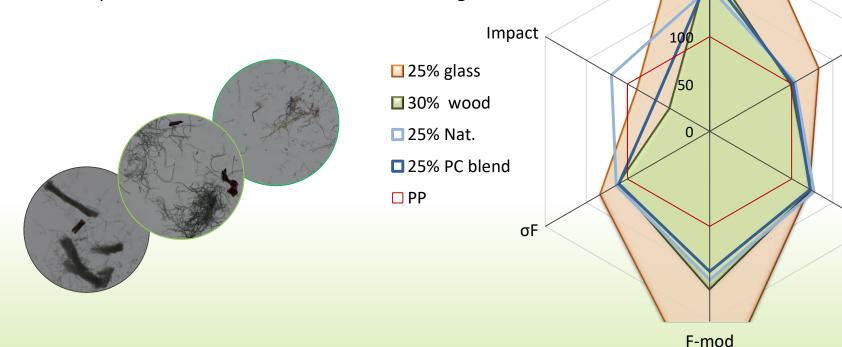
- Sorting, metal removal, melt filtration
- 71% PO materials (PP/PE blend)

Clean-up 2

- Further sorting
- 98% pure PP

WP 3.4 Industrial manufacturing and validation of short fibre reinforced PP composites

 σM


 σB

E-mod

150

Accomplishments and key results:

- Final properties depend on fibre type, length, morphology...
- Generally: higher stiffness (E- and F-mod)
- Adding suitable compatibilizer
 - → improved tensile, fracture and flexural strength

WP 3.4 Industrial manufacturing and validation of short fibre reinforced PP composites

Accomplishments and key results:

- Final properties depend on fibre type, length, morphology...
- Generally: higher stiffness (E- and F-mod)
- Adding suitable compatibilizer
 - → improved tensile, fracture and flexural strength
- Several demonstrators were produced:
 no major adaptations in processing conditions required

→ Short textile fibres, unsuitable for textile applications, can be applied as plastic reinforcement

Accomplishments and key results: Task 3.5

Industrial demonstrations for WPC compounding

WPC compounds

Parameters Studied:

- Processing temperature
- Polymer concentration
- Wood fiber concentration
- Compatibilizer concentration

Accomplishments and key results: Task 3.5

Industrial Product Trials: 1

Furniture Legs

Industrial Product Trials: 2

Crate (Boxes)

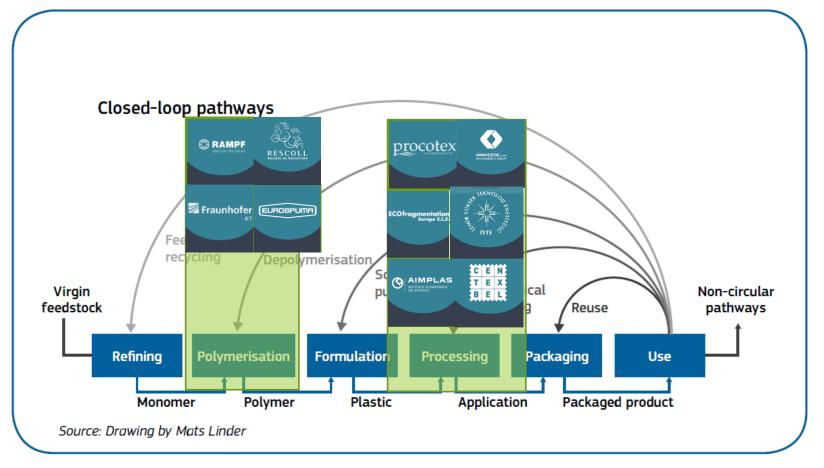
Accomplishments and key results: Task 3.5

Industrial Production and Validation - WPC

Technical Properties:

Mechanical Properties	WPC URBANREC	WPC MARKET
Tensile Strenght (MPa)	25	10-36
Tensile Modulus (MPa)	1900	2000-2750
Impact Resistance (J/m)	31	12-36
Environmental Resistance		
Properties		
Water Absorption (%)	=<1	=<1
Size change (swelling) (%)	< 0.5	<0.5

Price: 545 Euro 800-2700 Euro/tone


 Comparison of the specifications of the WPC products developed in the project with the specifications in the WPC market

Contribution of Urbanrec of different recycling loops for plastics in a circular economy

JEMENT

Source: A CIRCULAR ECONOMY FOR PLASTICS - Insights from research and innovation to inform policy and funding decisions, p. 141.

Thank you for your attention